Differential actions of PKA and PKC in the regulation of glutamate release by group III mGluRs in the entorhinal cortex.

نویسندگان

  • D I Evans
  • R S Jones
  • G Woodhall
چکیده

In a previous study we showed that activation of a presynaptically located metabotropic glutamate receptor (mGluR) with pharmacological properties of mGluR4a causes a facilitation of glutamate release in layer V of the rat entorhinal cortex (EC) in vitro. In the present study we have begun to investigate the intracellular coupling linking the receptor to transmitter release. We recorded spontaneous alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated excitatory postsynaptic currents (EPSCs) in the whole cell configuration of the patch-clamp technique, from visually identified neurons in layer V. Bath application of the protein kinase A (PKA) activator, forskolin, resulted in a marked facilitation of EPSC frequency, similar to that seen with the mGluR4a specific agonist, ACPT-1. Preincubation of slices with the PKA inhibitor H-89 abolished the effect of ACPT-1, as did preincubation with the adenylate cyclase inhibitor, SQ22536. Activation of protein kinase C (PKC) using phorbol 12 myristate 13-acetate (PMA) did not affect sEPSC frequency; however, it did abolish the facilitatory effect of ACPT-1 on glutamate release. A robust enhancement of EPSC frequency was seen in response to bath application of the specific PKC inhibitor, GF 109203X. Both H-89 and the group III mGluR antagonist (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) abolished the effects of GF 109203X. These data suggest that in layer V of the EC, presynaptic group III mGluRs facilitate release via a positive coupling to adenylate cyclase and subsequent activation of PKA. We have also demonstrated that the PKC system tonically depresses transmitter release onto layer V cells of the EC and that an interaction between mGluR4a, PKA, and PKC may exist at these synapses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential control of two forms of glutamate release by group III metabotropic glutamate receptors at rat entorhinal synapses

Neurotransmitter release at CNS synapses occurs via both action potential-dependent and independent mechanisms, and it has generally been accepted that these two forms of release are regulated in parallel. We examined the effects of activation of group III metabotropic glutamate receptors (mGluRs) on stimulus-evoked and spontaneous glutamate release onto entorhinal cortical neurones in rats, an...

متن کامل

Activation of group II metabotropic glutamate receptors inhibits glutamatergic transmission in the rat entorhinal cortex via reduction of glutamate release probability.

Glutamate interacts with ionotropic and metabotropic glutamate receptors (mGluRs). Whereas the entorhinal cortex (EC) is a principal structure involved in learning and memory, the roles of mGluRs in synaptic transmission in the EC have not been completely determined. Here, we show that activation of group II mGluRs (mGluR II) induced robust depression of glutamatergic transmission in the EC. Th...

متن کامل

Metabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders

Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...

متن کامل

Activation of presynaptic group III metabotropic receptors enhances glutamate release in rat entorhinal cortex.

The role of group III metabotropic glutamate receptors (mGluRs) in modulating excitatory synaptic transmission was investigated in the rat entorhinal cortex (EC) in vitro. AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) were recorded in the whole cell configuration of the patch-clamp technique from visually identified neurons in layers V and II. In layer V, bath application of t...

متن کامل

Ca2+-dependent binding of calcium-binding protein 1 to presynaptic group III metabotropic glutamate receptors and blockage by phosphorylation of the receptors.

Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca(2+) channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca(2+)-binding proteins are of particular importance as sensors of presynaptic Ca(2+), and a multiple of them are indee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 85 2  شماره 

صفحات  -

تاریخ انتشار 2001